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Abstract. In this paper the correlation in the energy spectrum and the persistent current of
multi-channel disordered rings threaded by an Aharonov–Bohm magnetic flux are studied.
The correlations of the persistent currents are found to be not as strong as those in single-
channel disordered rings. The results show that, for a tight-binding model withN sites on the
circumference andM sites on the cross-sectional plane, there are at leastN − 1 zero crossings
of the single-level currents, and at leastN − 2 zero crossings of the total currents at zero and
high temperatures.

1. Introduction

The persistent current in conducting rings threaded by Aharonov–Bohm magnetic flux has
been discussed ever since the discovery of the Aharonov–Bohm effect in superconducting
rings. Since the work by B̈uttiker, Imry, and Landauer [1] in 1983, interest in this area has
been renewed. Theoretical work [2–6] predicted, and subsequent experimental work [7–9]
confirmed, the existence of persistent current in the rings. Results on persistent current of
a ring also give us information on the energy spectrum, since the current can be calculated
from the derivative of the eigenenergy with respect to the magnetic flux. Previously, the
correlation in the energy spectrum of single-channel rings has been discussed by Cheung
and Riedel [10]. They proved that within a non-interacting model with arbitrary disorder,
the single-level current changes sign from level to level, and the total current alternates its
sign as the number of filled levels increases by one. Another way of putting this is that,
for a tight-binding model of single-channel rings which hasN sites, the single-level current
changes signN − 1 times, while the ground-state total current changes signN − 2 times as
the number of electrons increases. We define the zero crossings of the single-level current
as the energies at which the current of the level just below and the current of the level
just above are of the opposite sign. We define the zero crossings of the total current as the
chemical potentials [11] at which the total current changes sign. Thus for the above rings,
there areN −1 zero crossings for the single-level current, andN −2 zero crossings for the
total current.

In this article we extend the above results to multi-channel rings. Previously Cheung,
Riedel, and Gefen [4] have shown that in the diffusive regime the single-level currents of
energy levels within the energy rangeEc ∼ 1l/L are correlated, where1 is the energy
spacing for one channel,l is the mean free path, andL is the size of the ring in units of the
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Figure 1. The numerical result for single-level currents on a multi-channel ring with seven sites
along its circumference, four sites on its transverse direction (number of channels= 4), and
disorderW = 8. The currents are normalized so that the maximum single-level current of a
pure ring is 1. The levels are arranged in order of increasing energy.

Figure 2. The numerical result for the total current of the same ring as in figure 1, at temperature
kBT = 0.2V , as a function of the chemical potential. The chemical potential is also measured
in units of the tight-binding hopping matrix elementV .

lattice spacing. This means that, in the diffusive regime, the single-level current changes
sign roughlyl times, in the ballistic regime the single-level current changes sign roughlyL

times, and in the localized regime the sign of the single-level current is almost random from
level to level. The result of Cheung, Riedel, and Gefen [4] gives no hint as to the behaviour
of the total current. In addition, this result is for the average behaviour only. There has
been no result obtained that is applicable for every ring. Figures 1 and 2 show some of our
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numerical results. They show that the single-level and the total persistent currents change
sign many times. However, the pattern is less regular than that for single-channel rings.
These results must be known to researchers in the field, but there have not been specific
discussions of them.

In the sections below, the following points are discussed, and proofs given. (1) How
often do the single-level and total persistent currents change sign? (2) How do the disorder
and thermal fluctuation affect the sign changes for the single-level and total persistent
currents? The discussion is based on a ring described by a non-interacting tight-binding
model withN sites on the circumference andM sites on the cross-sectional plane. It is
proved that for arbitrary disorder, and at both zero and high temperatures, the single-level
and total persistent currents have at leastN − 1 andN − 2 zero crossings respectively.

2. The transfer-matrix-matching method and the moment conditions

Consider two- or higher-dimensional (multi-channel) rings having ofN sites on the
circumferences andM sites on the cross-sectional plane. The position along the circum-
ference is described by an integerj that take values from 1 toN , and the position on
the cross-sectional area is described by an integerk (k′) which can take values from 1 to
M. k andk′ are nearest-neighbouring sites on the cross-sectional plane. The tight-binding
Hamiltonian of the electrons on such rings is

H = −V
∑
j,k

[
a+j,kaj+1,k + a+j+1,kaj,k +

∑
k′
(a+j,kaj,k′ + a+j,k′aj,k)

]
+
∑
j,k

εj,ka
+
j,kaj,k (1)

wherea+j,k andaj,k are the creation and annihilation operators at site(j, k), V is the hopping
matrix element, andεj,k is the potential at site(j, k) and is assigned randomly. The
presence of an Aharonov–Bohm flux through a ring is equivalent to imposing a phase-
shifted boundary condition on the wavefunctions.

In the following, the transfer-matrix-matching method of finding the eigenenergies
and eigenfunctions is described. The transfer-matrix-matching method is essentially the
‘shooting’ method of solving the time-independent Schrödinger equation. Let the collection
of sites with the samej be referred to as thej th column. In this way each cross-sectional
plane of the ring is called a column, and there areN of them. The idea is to start with a
trial eigenenergyE, and a trial eigenfunction for the first two columns (sites withj = 1
and 2). This is equivalent to specifying the wavefunction and its derivative on a cross-
sectional plane. Then by enforcing the time-independent Schrödinger equation on the second
column, the eigenfunction on the third column can be calculated. The relation between the
eigenfunctions for different columns is linear, and can be written in terms of a matrix called
the transfer matrix [12]. By repeating this process, the eigenfunctions can be determined
over the whole ring. Each time one more column is involved, one more matrix multiplies
the existing matrix to form a combined transfer matrix, until one has gone around the ring
once. By imposing the appropriate boundary conditions, we have(

ψN+1

ψN+2

)
= T

(
ψ1

ψ2

)
= ei 2π8/80

(
ψ1

ψ2

)
(2)

whereψj is the eigenfunction for columnj , andT is the transfer matrix for going around
the ring once.8 and80 denote the applied magnetic flux and the flux quantum (=hc/e
in gaussian units) respectively. For non-trivial solutions to equation (2), the eigenenergies
satisfy the following characteristic equation:

Det(T − ei 2π8/80) = 0. (3)
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From the construction, we note that the left-hand side of equation (3) is a polynomial in
E of orderNM. Thus there are altogetherNM eigenenergiesEi , and their corresponding
eigenfunctions can be found for any given magnetic flux8. The determinant in equation (3)
can be rewritten in terms of the sums of the principle minors [13] ofT . After simplification,
equation (3) becomes

g(E,8) ≡ 2 cos

(
2Mπ8

80

)
+ 2

M−1∑
p=1

[
(−1)M−p cos

(
2pπ8

80

)
TrM−p

]
+ (−1)MTrM = 0

(4)

where g(E,8) is a newly defined function introduced to simplify the notation, and Trj

is the sum of the principal minors ofT of order j . For example, Tr1 is the trace of
T . Due to probability conservation and time-reversal symmetry, Tr2M = Det(T ) = 1 and
Trj = Tr2M−j , wherej = 1, 2, . . . ,M. Sinceg(E,8) is also a polynomial of orderNM
in E, it can be rewritten as

g(E,8) ∝
NM∏
i=1

[E − Ei(8)]. (5)

In equation (4), one can check that TrM is a polynomial of degreeNM in E, and that
all other Trj are of maximum degreeN(M − 1) in E. That is, wheng(E,8) is expressed
as a polynomial, the coefficients ofEN(M−1)+1, EN(M−1)+2, . . . , ENM are flux independent.
This fact can lead to a proof of the ‘moment conditions’ that was first pointed out by
Thouless [14], who stated that the first(N − 1)th moments of the energy spectrum are flux
independent. Expressed in mathematical form, this is

NM∑
i=1

E
j

i (8) = flux-independent quantities (6)

wherej = 1, 2, . . . , N − 1. A proof of the moment conditions had been given by Cheung
and Riedel [10].

From the above moment conditions, one can deduce that the rigidity of the energy
spectrum is less than that in single-channel rings [10]. The reason for this is that theN

eigenenergies of the single-channel rings have to satisfyN−1 moment conditions, whereas
the NM eigenenergies of the multi-channel rings have to satisfy onlyN − 1 moment
conditions. As a consequence, the degrees of freedom of the eigenenergies increase and the
number of zero crossings of the current can no longer be obtained exactly. In the following
sections, the zero crossings of the currents will be analysed.

3. Zero crossings of the single-level currents at zero temperature

By applying the well known current formulaIi = −c ∂Ei/∂8 to the moment conditions,
one can obtain a system of homogeneous linear equations relating the single-level currents
of different levels:

NM∑
i=1

E
j

i (8)Ii = 0 (7)

where j = 0, 1, 2, . . . , N − 2. Equation (7) is a useful starting point for deriving the
minimum number of zero crossings of single-level currents. The derivation is presented
here. First arrange the eigenenergies in ascending order. LetR be the number of different
zero crossings of the single-level currents, and supposeR 6 N − 2. The zero crossings
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Figure 3. A schematic plot of the single-level current against energy in a multi-channel ring
with N = 7 andM = 2. The levels with energyE and currentI are represented by dots on the
graph.α1, α2, . . . , α6 are zero crossings and not energy levels in the spectrum. In this example,
there are in total six zero crossings of the single-level currents.

are labelled asα1, α2, . . . , αR on the energy axis. An example is shown in figure 3.
Now consider the expression

∑NM
i=1 f (Ei)Ii where f (E) = ∏R

j=1 (E − αj ). From the
construction,f (Ei)Ii is either completely positive or negative for alli, and hence its sum
cannot be zero. On the other hand, we can analyse the same expression in another way—that
is, by expandingf (E) as a polynomial inE. In this way, one obtains

∑NM
i=1 f (Ei)Ii = 0

after using equation (7), and this result contradicts the above result that
∑NM

i=1 f (Ei)Ii 6= 0.
To avoid the contradiction, there must be at leastN − 1 zero crossings of the single-level
currents. An alternative method is also given in the appendix.

4. Zero crossings of the total currents at zero temperature

In a previous paper [10], it has been proven that the total current changes sign every time
that one more level is filled, except when the first or last level is filled. Thus there are
N − 2 zero crossings for a single-channel ring withN sites on its circumference. We now
focus on the multi-channel rings. The analysis follows that for the single-channel ring [10],
with extra complications.

Recall that the eigenenergiesEi(8) are roots of the equationg(E,8) = 0 for a given
magnetic flux8. Accordingly, if8 is changed by an infinitesimal amount d8, and hence
Ei changes by an infinitesimal amount dE, g(E,8) should remain at zero. That is to say

dg = ∂g

∂E
dE + ∂g

∂8
d8 = 0

and hence the current can be obtained from

Ii = −cdEi
d8
= c

∂g

∂8

/ ∂g

∂E

∣∣∣∣
E=Ei

. (8)

Refer to the analysis in the last section:g(E,8) is a polynomial of degreeNM in E, and
the coefficients ofEN(M−1)+1, EN(M−1)+2, . . . , ENM are flux independent. Consequently,
∂g/∂8 is a polynomial of orderN(M − 1). Let us denote the zeros of∂g/∂8 by em(8),
wherem = 1, 2, . . . , N(M−1). Using equations (5) and (8), the single-level currentIn for
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a particular leveln can be rewritten as

In ∝
N(M−1)∏
m=1

[En(8)− em(8)]
/NM∏
m=1

′
[En(8)− Em(8)]

= 1

2π i

∮
CEn

(N(M−1)∏
m=1

[E − em(8)]
/NM∏
m=1

[E − Em(8)]
)

dE

≡ 1

2π i

∮
CEn

h(E,8) dE (9)

whereh(E,8) denotes the integrand of the integral. The above integration is over a closed
contour CEn enclosing the pole atEn. By choosing the contour of integration such that it
encloses the lowestn eigenenergies, the total current of the firstn levels can be expressed
as

Itotal ∝ 1

2π i

∮
C
h(E,8) dE. (10)

Equation (10) is a convenient starting point for deriving the minimum number of zero
crossings of the total current. The crucial step in the derivation is to choose suitable
contours of integration on the complex plane that allow the sign of the total current to be
determined. In reality one needs a contour such that the integrand is purely real and does
not change sign along the whole contour. If we rewrite the integrand as|h(E,8)|eiθ , and
restrictθ to taking only the values±lπ wherel is any integer, some lines on the complex
plane can be defined. On any one of these lines, the integrand will have a definite sign. In
the following we will analyse these lines.

Figure 4. A schematic plot of the contours in equation (10) on the complexE-plane, with
N = 4,M = 2. × and◦ represent the poles and zeros respectively.
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Let us first look at the regions that are far away from the origin on the complex plane,
and exclude the real axis. One sees that there areNM poles andN(M − 1) zeros in the
integrand. Thus, in the regions concerned, one can easily see that there are exactlyN − 1
lines defined byθ = ñlπ , wherel is an integer in the range from 1 toN − 1. In the regions
that are close to the poles and zeros of the integrand, these lines may acquire a complicated
structure (see, for example, figure 4). Since the integrand is an analytic function, there
cannot be any local maxima or minima in the open half-planes. This means that if one
traces along any one of theN − 1 lines from infinity in the lower half-plane, the sign of
the integrand remains unchanged, and the absolute value of the integrand will increase from
zero. At places where the line branches out, such as point B in figure 4, one can always
choose such a path that the absolute value of the integrand keeps on increasing, until one
reaches the real axis (for example, line BF′ in figure 4). Once the real axis has been crossed
and the upper half-plane entered, one can choose a line that is mirror symmetric to that in
the lower half-plane. In this way one hasN − 1 lines that start from infinity on the lower
half-plane and go to infinity on the upper half-plane. Suppose that we choose any one of
these lines as the integration contour in equation (10), and that the integration contours are
closed at infinity, enclosing all of the eigenenergies to the left of the line; one can easily
see that:

(1) the integration along the contour at infinity contributes nothing;
(2) when tracing upward along the line from infinity on the lower half-plane, the

contribution to the imaginary part of the integral is of the same sign as that of the integrand;
and

(3) occasionally the line may have to change its direction from upward to downward,
before eventually turning upward again. One can see that the contribution to the imaginary
part of the integral from such a section would change sign. However, this opposite
contribution will be more than compensated by the section either just before or just after
the section in question. For example, the contribution from section BC in figure 4 is of
the opposite sign to that from section CD. However, the contribution from section CD will
more than compensate the contribution from the section BC (since the absolute value of the
integrand will be monotonically increasing as one traces along BCDF). So ABFGH is also
a valid contour.

Along such a line, one can see that the imaginary part of the integral is of a definite
sign [15], given by(−1)l . This is the sign of the total current of the firstn levels. Since
there areN − 1 lines regardless of the degree of disorder, we see that there are at least
N − 2 zero crossings [16].

5. Zero crossings of the total current at high temperatures

In this section we discuss the effects of thermal fluctuation on the zero crossings of the
total average current. We consider the system within the grand-canonical ensemble [11]. In
this way the occupation probability of each level is given by the Fermi–Dirac function. It
would be interesting to know whether the correlation in the current would be weakened by
thermal fluctuation.

Starting from equation (9) for the single-level current, the currents from all of the levels
are summed using the Fermi–Dirac function. In this way the average total current can be
written as

Itotal(T ) ∝ 1

2π i

∮
h(E,8)

exp((E − µ)/kBT )+ 1
dE (11)
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whereT ,µ, andkB represent the temperature, chemical potential, and the Boltzmann factor
respectively. The integration is from−∞ to +∞ just below the real axis, and from+∞
to −∞ just above the real axis. In this way all of the levels are counted. Since the Fermi–
Dirac function is present, the contour below and above the real axis can be deformed to
include all of the poles of the Fermi–Dirac function. The result is

Itotal(T ) ∝
∑
oddm

h(µ+ imπkBT ,8). (12)

At high temperatures (i.e.kBT � energy spacing), the contributions from them = ±1
terms dominate. Thus the average total current is twice the real part of the function
h(µ + iπkBT ,8). From the analysis in the last section, one sees thatθ changes from
0 to Nπ as one moves in an anticlockwise fashion along a big circle in the upper half of
the complexE-plane. This means that if the temperature is fixed at a high value, and the
chemical potentialµ is allowed to vary from−∞ to +∞, the average total current must
have at leastN −2 zero crossings [17]. The above calculations assume the grand-canonical
ensemble. Similar results are obtained in numerical simulations assuming the canonical
ensemble.

6. Discussion

We have proved that at both zero temperature and at high temperatures, there are at least
N − 2 zero crossings of the total current. At intermediate temperatures the situation for the
number of zero crossings is still unclear. We conjecture that the number of zero crossings
of the total currents at finite temperatures would be at leastN − 2 too, since (i) this would
be consistent with the result at zero temperature and at high temperatures, and (ii) results
with fewer zero crossings at intermediate temperatures have never been obtained in our
numerical work.

It should be emphasized that, for multi-channel rings, the minimum number of zero
crossings of the total current is the same as that for single-channel rings (i.e.N − 2).
This lowest bound is independent of the number of channels. From this result, the total
current for multi-channel rings is not expected to change sign every time an extra electron is
added. Instead, it would change sign if roughlyM more electrons were added. This strong
correlation between the currents occurs regardless of the degree of disorder of the system,
and does not seem to depend on thermal fluctuation over the whole temperature range.
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Appendix

There is an alternative method for looking at the number of zero crossings of the single-
level currents starting from the second expression of equation (9). Asn increases, the
denominator changes sign preciselyNM − 1 times, while the numerator changes sign only
at mostN(M − 1) times. So the number of sign changes ofIn asn goes from 1 toNM
is at leastNM − 1 − N(M − 1) = N − 1. This result is the same as what we have
concluded—that there are at leastN − 1 zero crossings for the single-level currents.
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[1] Büttiker M, Imry Y and Landauer R 1983Phys. Lett.96A 365
[2] Cheung H F, Gefen Y, Riedel E K and Shih W H 1988Phys. Rev.B 37 6050
[3] Cheung H F, Gefen Y and Riedel E K 1988 IBM J. Res. Dev.32 359
[4] Cheung H F, Riedel E K and Gefen Y 1989Phys. Rev. Lett.62 587
[5] Bouchiat H and Montambaux G 1989J. Physique50 2695
[6] Ambegaokar V and Eckern U 1990Phys. Rev. Lett.65 381
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